
A SIP User Manual

for SIP version 0.3 (rev. 2)

Jocelyn DRUEL
jocelyn.druel1@libertysurf.fr

May 25, 2004

2

Contents

1 Introduction 5

2 Starting with SIP 7
2.1 Installing SIP . 7
2.2 Looking at a demo . 7
2.3 A problem with memory . 7
2.4 Reading an image . 8
2.5 Viewing an image . 8
2.6 Writing a matrix as an image file 8
2.7 Normalising . 9
2.8 About coordinates . 9

3 Basic manipulations 11
3.1 Mean of 2 images . 11
3.2 Multiplication of 2 images . 11
3.3 Addition or subtraction modulo 256 11

4 Grayscales, colors, pseudocolors and conversions 13
4.1 Grayscale images . 13
4.2 Truecolor images . 13
4.3 Pseudocolor images . 14

4.3.1 Introduction . 14
4.3.2 Viewing colormaps . 14
4.3.3 Pseudocolor images . 15
4.3.4 I want to see more . 15

4.4 Converting a colored image to grayscale 16
4.5 Thresholding . 16

5 Image filtering 17
5.1 Image convolution . 17

5.1.1 General usage . 17
5.1.2 Pre-defined filters . 18
5.1.3 Examples . 19

5.2 Other filters . 19

3

4 CONTENTS

5.2.1 Median filter . 19
5.2.2 Histogram equalization 19

6 Using fft in images 21
6.1 Observing the spectrum . 21
6.2 Modifying an image by acting on the spectrum 22

7 Interfacing C with SIP 25
7.1 Why ? . 25
7.2 Warnings . 25
7.3 How ? . 25

7.3.1 Adding a real to a matrix 26
7.3.2 Loading the code in Scilab 28
7.3.3 A bit more difficult . 29
7.3.4 Misc. 31

8 Thanks 33

9 References 35

10 Index 37

Chapter 1

Introduction

SIP stands for Scilab Image Processing. Its homepage is located at:

http://siptoolbox.sourceforge.net

This software was designed by Ricardo Fabbri <rfabbri@if.sc.usp.br> in
order to be able to use the power (and tools) of Scilab to treat images.

Let’s look at what he says about his goals:
” I have a dream that one day SIP/SciLab will be the great free prototyping

environment for image processing, used and developed by people all over the
world. There are, of course, many obstacles to overcome before this dream come
true.”

SIP is free software (GPL license), and as such external contributions are
welcome. Several people have already contributed with other functions, docu-
mentations or simply tests and bug reports.

I was already a Scilab user when I discovered SIP. I had long searched for
an easy way to treat images in various format (jpg, bmp,. . .). As SIP uses
ImageMagick, every file format recognized by ImageMagick will be available in
SIP.

This little book tries to help people start with SIP and develops some basic
notions about image treatement.

Caution: it does not describe all possibilities of SIP !
It applies mainly to version 0.3 so expect some modifications if you use

another one.
I’m developping with the Linux OS which I find much better than the M$

OS (I love freedom). The file path with Linux is noted with a slash whether
Windows uses backslash, so take care when copying examples from this book.

Feel free to send me comments and critics about it (you could also use the
development list to do so, which is a better way to improve free software). It’s
always pleasant to have feedback from other people. . .

About the license of this document: well. . . , I not a license expert, so I’d
like to say I wrote this manual on my spare time.

5

http://siptoolbox.sourceforge.net

6 CHAPTER 1. INTRODUCTION

If you use some part of it, at least, don’t claim it’s your own work !

Author:
Jocelyn Druel
Lycee Gustave Eiffel
Labo photonique
96 rue Jules Lebleu
59280 ARMENTIERES
FRANCE
mail: <jocelyn.druel1@libertysurf.fr>

Chapter 2

Starting with SIP

SIP uses ImageMagick to transform an image file in a matrix usable by Scilab.
The file formats usable are all those of ImageMagick: JPEG, TIFF, BMP, PNG,
. . . , and many more.

2.1 Installing SIP

Two versions of SIP are available:

• a binary one which is self-containing, which means you don’t have to
download other packages (such as ImageMagick): it’s certainly the easiest
way to start !

• a source distribution that you need to compile.

To load the SIP toolbox in Scilab, please refer to the file ”INSTALL.txt”
which comes with your SIP version.

Shortly, once installed correctly, launch Scilab and type exec loader.sce.
You should have a message like ”SIP - Scilab Image Processing loaded” in

your Scilab window.
Ready ?

2.2 Looking at a demo

Launch exec(SIPDEMO) to have a little idea of SIP possibilities.

2.3 A problem with memory

As images are very big in memory occupation, you should increase the stacksize
in Scilab by using

--> stacksize(3e7) (the number after stacksize depends on the memory
available on your pc).

7

8 CHAPTER 2. STARTING WITH SIP

If you don’t want to write this instruction each time you start Scilab, you can
create (or edit if it exists) a file /home/my_user_name/.scilab which contains:

stacksize(3e7);

This file is executed at each start of Scilab.
Alternatively, to make this change system wide, you can modify (if you have

sufficient permissions) the scilab.star file (usually located in /usr/lib/scilab)
so that every user has the same settings.

2.4 Reading an image

If you don’t have images available, you can use SIP ones by
--> chdir(SIPDIR+’images’)

To read a grayscale or truecolor image:
--> mat=imread(’ararauna.jpg’); (don’t forget the ; if you don’t want

to see all the content of the matrix displayed on the screen).
The matrix called ”mat” now contains the image ”ararauna.jpg”. All tools

availables in Scilab for matrix are instantly availables to treat images.
Wonderful !
If you have a pseudocolor image, you must also get the colormap:
--> [mat,map]=imread(’ararauna.png’);

If you don’t know what are pseudocolor images, the chapter 4 ”Grayscales,
colors, pseudocolors and conversions” will give you more infos.

Note: For Grayscale and Truecolor images, mat values will be in the range
0-1.

For indexed (or paletted) images, mat values will be in the range 0-NC (NC:
Number of Colors).

2.5 Viewing an image

--> xbasc();imshow(mat); (xbasc() is to clear the current graphic window)
for grayscale or truecolor images.

For a pseudocolor image:
--> xbasc();imshow(mat,map);

2.6 Writing a matrix as an image file

--> imwrite(mat,’/home/druel/test.jpg’)

(be sure to have writing permissions on the destination repertory).
For pseudocolorimages, you have to save the colormap too:
--> imwrite(mat,map,’/home/druel/test.jpg’)

2.7. NORMALISING 9

2.7 Normalising

To darken an image:
--> dmat=mat*0.6;
--> xset(’window’,2);xbasc();imshow(dmat);
--> max(dmat) returns 0.6
Now, if you want the image to reoccupy the full range from 0 to 1, you can

use the instruction normal:
--> nmat=normal(dmat);

2.8 About coordinates

The coordinates of an image start at the left upper corner. Let’s see it with an
example:

--> image=imread(SIPDIR+’images/ararauna.jpg’);
--> [r c]=size(image); number of rows and columns
--> image(10,:,1)=1; draws a red line on row number 10.
--> image(:,10,2)=1; draws a green line on column number 10.

10 CHAPTER 2. STARTING WITH SIP

Chapter 3

Basic manipulations

3.1 Mean of 2 images

--> mat1=imread(’image1.jpg’);mat2=imread(’image2.jpg’);
--> mat_mean=(mat1+mat2)/2;
--> xbasc(); imshow(mat_mean);

3.2 Multiplication of 2 images

Do not forget that multiplication of 2 matrix does not mean multiplying each
element of the 1st matrix at the place i, j by the element i, j of the 2nd matrix!

To do so, use the dot (.):
--> mat=imread(’image.jpg’);
--> pmat=mat.*mat; calculates mat2.
Compare with
--> pmat=mat*mat;

3.3 Addition or subtraction modulo 256

When using the function imread, the result matrix is coded with doubles be-
tween 0 and 1.

If you have 8bit images and want to perform an addition or subtraction
modulo 256 (ie 10-250=-240=16 modulo 256), simply do:

--> mat1=imread(’image1.jpg’);mat2=imread(’image2.jpg’);
--> mat_modulo=uint8(mat1*255)-uint8(mat2*255);
--> mat_modulo=double(mat_modulo)/255; in order to avoid future prob-

lems when trying to display mat modulo.

11

12 CHAPTER 3. BASIC MANIPULATIONS

Chapter 4

Grayscales, colors,
pseudocolors and
conversions

Advice: pass this chapter if you’re just discovering SIP and come back later to
improve your knowledge (and maybe solve your problems).

There are 3 types of images: grayscale, truecolor and pseudocolor.

4.1 Grayscale images

Grayscale images are 2D arrays of pixel values.
To read an image as a grayscale one, you should use the gray_imread func-

tion (instead of imread.
--> mat=gray_imread(’onca.gif’);
--> xbasc();imshow(mat);
--> size(mat)
Usually, you can have 16 bits (values from 0 to 216 − 1 = 65535) or 8 bits

(values from 0 to 28 − 1 = 255) images.
SIP now stores these images in a 0-1 range. If you prefer to work with 0-255

or 0-65535 ranges, you just have to multiply mat by this factor.

4.2 Truecolor images

Truecolor images are made of 3 grayscale images, one for each channel: red,
green and blue:

--> mat=imread(’ararauna.jpg’);
--> xbasc();imshow(mat);

13

14CHAPTER 4. GRAYSCALES, COLORS, PSEUDOCOLORS AND CONVERSIONS

--> size(mat)
mat(:,:,1) is the red component, mat(:,:,2) is the green component and

mat(:,:,3) is the blue component.

4.3 Pseudocolor images

4.3.1 Introduction

Again, let’s do:
--> image=imread(’onca.gif’);
--> min(mat); is 1
--> max(mat); is 256
This time, the each pixel value points to a color defined in a colormap.
If you want to display this picture in gray, do
--> xbasc();imshow(mat,graycolormap(256));
to use a gray colormap with 256 values.
You may find that a gray display is a bit sad: a colorful life is joyfuler ! So

let’s decide that:

• the low values (near 1) will be displayed in dark red;

• the high values (near 256) will be displayed in light yellow;

To perform it:
--> map=hotcolormap(256);
--> xset(’window’,1);xbasc();imshow(image,map);
Now, we look in details at map: it is a matrix with 3 columns and 256 rows.

The 1st row describes the color associated with the pixel value 1, the 2nd row
is for the pixel value 2, . . .

The 3 columns represent the quantity of (respectively): red, green and blue
associated with each pixel value (range 0-1).

We can reverse the order of the map matrix, ie we associate yellow to the
pixel value 0 and red to the pixel value 255.

--> invmap(256:-1:1,1:3)=map(1:1:256,1:3);//reverse order
--> xbasc();imshow(image,invmap);
If you prefer blue colors, you can do:
--> xbasc();imshow(image,1-hotcolormap(256));
Standard Scilab (version 2.7) has only 2 pre-defined colormaps: grayscale

and hotcolormap. But, if you want more, install the add-on toolbox called
”Enrico” (very easy: exec ’builder.sce’ followed by exec ’loader.sce’). Then
display an image and launch es_demos(). Choose different colormaps and have
fun.

4.3.2 Viewing colormaps

Just a practical example to view these beautiful colormaps:
--> pseudo=ones(1:256)’*(1:256);

4.3. PSEUDOCOLOR IMAGES 15

--> xbasc();imshow(pseudo,hotcolormap(256));

4.3.3 Pseudocolor images

Some images are coded as ”pseudocolor images”, with a complex colormap. The
following instructions

--> image=imread(’ararauna.png’);
--> xbasc();imshow(image,graycolormap(256));
does not show the expected bird in grayscale. This is because the computer

associates each pixel value with a gray level, instead of associating it with a
color described in the colormap.

The correct way is to get the 2D array and the colormap at the same time:
--> [image,map]=imread(’ararauna.png’);
--> xbasc();imshow(image,map);
Display the colormap by:
--> pseudo=ones(1:256)’*(1:256);
--> xbasc();imshow(pseudo,map);
When writing this kind of picture, don’t forget to save the map by:
--> imwrite(image,map,filename);

4.3.4 I want to see more . . .

The introductory demo from Ricardo Fabbri is a visual explanation for col-
ormaps. Launch it by exec(SIPDEMO).

As colormaps are matrix, you can perform operations on them.

Graycolormap Hotcolormap Hotcolormap (reverse)

(1-hotcolormap) (hotcolormap(256)+ colormap for
graycolormap(256))/2 ararauna.png

16CHAPTER 4. GRAYSCALES, COLORS, PSEUDOCOLORS AND CONVERSIONS

4.4 Converting a colored image to grayscale

--> mat=imread(’ararauna.jpg’);
--> gmat=im2gray(mat);
--> xset(’window’,1);xbasc();imshow(gmat);
Or directly:
--> gmat=gray_imread(’ararauna.jpg’);
Note: typeof(mat) is ’hypermat’ (color) and typeof(gmat) is constant

(grayslevels).

4.5 Thresholding

To threshold an image at the 70% level (the result will be rather dark):
--> bmat=im2bw(gmat,0.7);
--> imshow(bmat);
The bmat has only 2 values: 0 or 1.

Original image Threshold 70% Threshold 50%

Chapter 5

Image filtering

5.1 Image convolution

Convolution of an image by a matrix is an easy operation: the value of each
pixel is modified depending of the values of its neighbours and of the coefficients
of the convolution matrix (or ”kernel”).

Example: Consider the following pixels:

1 5 1
2 4 3
8 2 1

If you want to smooth the image (ie to have less variations), you can choose
the following kernel:

1 1 1
1 1 1
1 1 1

The central pixel (initial value = 4) will now have the value (1x1)+(1x5)+
(1x1)+(1x2)+(1x4)+(1x3)+(1x8)+(1x2)+(1x1)=27. Of course, to make sense,
you should divide by 9 (sum of the coefficients of the kernel).

The central pixel takes then the value = 3.
The operation is repeated for each pixel of the image.
Several kernels exist, depending on wheter you want to smooth the image,

or show quick variations of luminosity, . . .

5.1.1 General usage

You’ve got a matrix named ”mat”. Let’s do a mean filtering:
--> kern=[1 1 1;1 1 1;1 1 1]
--> mat_conv=(1/9)*imconv(mat,kern);
--> xbasc(); imshow(mat_conv);

17

18 CHAPTER 5. IMAGE FILTERING

5.1.2 Pre-defined filters

Do not reinvent the wheel all the time. There are several kernels which come
with SIP.

--> mkfilter(’mean’)
--> mat_conv=imconv(mat,mkfilter(’mean’));
--> xbasc(); imshow(mat_conv);
PS: if you’ve got an interesting kernel, please consider sending it to the SIP

development list.

Low-pass filters

Low-pass filters reduce the variations of the luminosity in the image.
2 examples:

• ”mean”

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

• ”low-pass”

1/12 1/12 1/12
1/12 4/12 1/12
1/12 1/12 1/12

This one produces less correction than the ”mean” kernel.

Laplaciens

Using this kernel will show points of the image where intensity is varying quickly
(2nd derivatve).

Because images are discrete (and not continuous), the second derivative can
only be approximated. here are 3 common approximative kernels:

• ”laplace1”

0 -1 0
-1 4 -1
0 -1 0

• ”laplace2”

-1 -1 -1
-1 8 -1
-1 -1 -1

5.2. OTHER FILTERS 19

• ”laplace3”

1 -2 1
-2 4 -2
1 -2 1

5.1.3 Examples

Original image Mean filtering Laplace1 filtering

5.2 Other filters

These are non-linear filters.

5.2.1 Median filter

Consider the following pixels:

1 5 1
2 4 3
8 2 1

If you order these values, you have:

1 1 1 2 2 3 4 5 8

The median value is 2 (the 5th position), so the value 2 is affected to the central
pixel.

This is a low-pass filter used to despeckle an image (it suppresses the high-
frequency noise without blurring too much the image). Very usefull with images
obtained with lasers (because of speckle).

--> mmat=mogrify(mat,’-median 1’); performs a median filter. The ra-
dius of the matrix used is 1, ie it’s a 3x3 matrix.

5.2.2 Histogram equalization

This operation is often used to enhance the contrast of an image:
--> image=gray_imread(’gra.jpg’);
--> xset(’window’,0);imshow(image);
--> fimage=mogrify(image,[’-equalize’]);

20 CHAPTER 5. IMAGE FILTERING

--> xset(’window’,1);imshow(fimage);
If you want to see histrogram modifications, you can plot them with:
--> xset(’window’,2);histplot(64,image);
--> xset(’window’,3);histplot(64,fimage);

Original image Histogram

Filtered image Histogram

Chapter 6

Using fft in images

6.1 Observing the spectrum

The Fourier Transform gives informations about which frequencies are present
in a signal (=spectrum).

In images, small details correspond to high frequencies.
A great interest of the spectrum is that the original image can be re-obtained,

using the spectrum. Of course, adding or suppressing frequencies in the spec-
trum will result in a modified image.

In optics, the diffraction figure represents the spatial frequencies of the aper-
ture or Fourier spectrum. Small details (a slim slit) will create high frequencies,
localised far from the center.

Usualy you modify the spectrum and then recreate an image of the initial
object (strioscopy).

In this first section, we will just visualize the influence of several filters on
the spectrum.

--> image=zeros(400,300);
--> image(180:220,145:155)=1;
--> xset(’’window’’,0);xbasc();imshow(image);
--> IM=fft(image,-1);
--> spectrum=real((IM).*conj(IM)); calculates the image power spec-

trum.
--> xset(’’window’’,1);xbasc();imshow(spectrum,[]); shows a spec-

trum with low frequencies located at each corner. If you want to have low
frequencies in the middle, just:

--> spectrum2=sip_fftshift(spectrum);
--> xset(’’window’’,2);xbasc();imshow(spectrum2,[]);
Of course it’s difficult to see all the frequencies. The figure shows a very

high central peak. A better visualisation can be obtainde by two methods:

• use the log properties:

--> spectrum3=log(spectrum2+1);

21

22 CHAPTER 6. USING FFT IN IMAGES

--> xset(’’window’’,3);xbasc();

--> plot3d1(1:4:400,1:4:300,spectrum3(1:4:400,1:4:300));

• or you can ”saturate” the image:

--> spectrum3=spectrum2;threshold=1e3;

--> spectrum3(find(spectrum3>threshold))=threshold;

--> xset(’’window’’,3);xbasc();

--> plot3d1(1:4:400,1:4:300,spectrum3(1:4:400,1:4:300));

See the effects of a low-pass and of a sharpener filter on the spectrum by
-->image=imconv(image,mkfilter(’mean’)); or
-->image=imconv(image,mkfilter(’sh2’)); before calculating the fft.

6.2 Modifying an image by acting on the spec-
trum

The original image is restituted by
--> im2=real(fft(IM,1));
Before restitution, we will apply a filter on the spectrum. The simpliest filter

is a binary one.Usually these filters are in cylindrical coordinates.
Let’s see that on a real example:
-->image=gray_imread(SIPDIR+’images/ararauna.jpg’);
-->[r,c]=size(image);
-->xset("window",0);xbasc();imshow(image);
-->IM=fft(image,-1);
-->spectrum=real((IM).*conj(IM));
-->xset("window",1);xbasc();imshow(spectrum,[]);
-->sp2=fftshift(spectrum);to center the spectrum
-->xset("window",2);xbasc();imshow(sp2,[]);
-->sp3=log(sp2+1);
-->xset("window",3);xbasc();imshow(sp3,[]);
-->//design the binary filter
-->z=zeros(image);
-->x0=round(r/2);radius=10;y0=round(c/2);
-->for x=x0-radius:x0+radius
--> y=round(sqrt(radius^2-(x-x0)^2));
--> z(x,y0-y:y0+y)=1;
-->end;
-->//if you want to inverse the filter
-->//z=abs(1-z);//complementary filter
-->xset("window",4);xbasc();imshow(z,[]);
-->IM2=IM.*fftshift(z);//spectrum modification
-->//reverse transform
-->im2=real(fft(IM2,1));

6.2. MODIFYING AN IMAGE BY ACTING ON THE SPECTRUM 23

-->xset("window",5);xbasc();imshow(im2,[]);

Be careful, the following is not equivalent:

-->IM3=fftshift(IM).*z;//spectrum modification

-->im3=real(fft(IM3,1));

High frequencies must be in the center to allow a correct behavior of the
reverse Fourier Transform.

You can find already built filters with the function mkfftfilter.

24 CHAPTER 6. USING FFT IN IMAGES

Original image Spectrum (log representation)

Filter Resulting image

Complementary filter Resulting image

Chapter 7

Interfacing C with SIP

7.1 Why ?

Scilab is a great langage but it’s an interpreted one. So, it’s easy to use, but
unfortunately slow. In particular, always try to avoid loops to maximize per-
formance (use operations on matrix instead).

Well, a time will come when you’ll want speed in Scilab - SIP, with your
huge images and complex treatments.

There are two solutions: buy an newer PC or learn to interface C code to
Scilab.

The benefit can be very high: I had a scilab function which took 14 seconds
to complete. When I coded it in C, it took 0.1 second for the same result. So
consider this . . .

7.2 Warnings

1. I’m a poor C coder. Only necessity (a bit of curiosity also ?) made me do
this.

2. I’m open to improvements you suggest. . .

3. this section is very inspired from ”Introduction a Scilab” by the Scilab
Group.

I just tried to make simplier things than they did.

7.3 How ?

Once you have your nice C function, you need to make it communicate with
Scilab.

This is done by writing an interface. You can

25

26 CHAPTER 7. INTERFACING C WITH SIP

• write it by hand: it’s what we’ll do

• generate it with intersci. Refer to the documentation of this tool if you
want to do so.

There are several examples of interfacing in the directory examples of Scilab.
You could have a look at interface-tutorial to begin.

7.3.1 Adding a real to a matrix

This is the first example, the easiest I found useful: the aim is to create a new
Scilab function with this syntax:

C=imadd(A);
The function will simply add a real to the matrix.
I chose to add 0.4 to each element of the input matrix.
Here is the code:

1 /*
* ---
* imadd_int.c:
* an example for learning interfacing

5 * ---
*/

#include <string.h>
#include "sip_common.h"

10 static void
imadd(double a[], double c[],int m, int n);

SipExport int
imadd_int(char *fname)

15 {
static int l1, m1, n1,/* a*/

l2;/* c*/
static int minlhs=1, maxlhs=1, minrhs=1, maxrhs=1;

20 /* Check number of inputs and outputs */
CheckRhs(minrhs,maxrhs);
CheckLhs(minlhs,maxlhs);

/*Input parameters: */
25 /*GetRhsVar(number, type, matrix_size1, matrix_size2, value);*/

GetRhsVar(1, "d", &m1, &n1, &l1);

/* Ouput creation:*/
/* CreateVar(number, type, matrix_size1, matrix_size2, &l3); */

30 CreateVar(2, "d", &m1, &n1, &l2);

7.3. HOW ? 27

/* Call function */
imadd(stk(l1), stk(l2), m1, n1);

35 /* The return variable is number (2) */
LhsVar(1) = 2;
return 0;

}

40 #define A(i,j) a[i + j*m]
#define C(i,j) c[i + j*m]

/* m= number of rows, n=columns*/
/* i and j are row and column*/

45 void
imadd(double a[], double c[],int m, int n)
{
int i,j;
double s;

50

s=0.4;

for(i=0 ; i < m; i++){
for(j=0; j < n; j++){

55 C(i,j)=A(i,j)+s;
}

}
}

I put the function imadd and its interface imadd int in the same file, but it
could be in separate ones.

It seems difficult, but once you’ve got an interface, you can easily duplicate
it for other functions.

Explanations:

• ligne 10-11: the input matrix is a, the output one is c, m and n are the
sizes (rows and columns).

• line 20: check the number of arguments. rhs are for input arguments, lhs
for output.

The easiest is to have maxrhs=minrhs.

• line 26: we get the input parameter: a is in the 1st place of imadd, its
type is ”double” (”d”), &m1 and &n1 are the sizes and &l1 is an address
to access datas.

28 CHAPTER 7. INTERFACING C WITH SIP

• line 30: we create the output parameter: c is in the 2nd place of imadd,
its type is ”double” (”d”), its sizes are &m1 and &n1 (same as a) and &l2
is an address to access datas.

• line 33: we call the imadd function.

• line 36: the 1st output parameter is in 2nd place in imadd.

7.3.2 Loading the code in Scilab

Now, we have a really great new function but Scilab does not recognize it yet.
To load the code in Scilab, you need a builder.sce file in the same directory

as imadd int.c.
Here is an example:

1 // This is the builder.sce
// must be run from this directory

ilib_name = ’libtutorial’ // interface library name
5 files = [’intview.o’,..

’intmatmul.o’,..
’unwrapl_c_int.o’,..
’imvariance_int.o’,..
’imadd_int.o’] // objects files

10 //
libs = [] // other libs needed for linking
table = [’view’, ’intview’; // table of (scilab_name,interface-name)

’matmul’,’intmatmul’;
’unwrapl_c’,’unwrapl_c_int’;

15 ’imvariance’,’imvariance_int’;
’imadd’,’imadd_int’]; // for fortran coded interface use ’C2F(name)’

// do not modify below
// --

20 ilib_build(ilib_name,table,files,libs)

This file will add 5 new functions to the library named ’libtutorial’.
You have to adapt to your own needs but it’s very easy.
Then you launch Scilab, and execute exec(’builder.sce’);
If everything is allright, many files were created. Just do: exec(’loader.sce’);

and test in Scilab: a=[5 8];b=imadd(a);
Note: builder.sce is needed to compile a new library. After that only

loader.sce is neede.

7.3. HOW ? 29

7.3.3 A bit more difficult

Now, we want to be able to pass the value to add in the function: b=imadd2(a,0.3);
to add 0.3 to each element of a.
To complicate, we will store result in a temporary matrix (named temp1).

1 /*
* ---
* imadd2_int.c:
* another example for learning interfacing (with memory allocation)

5 * ---
*/

#include <string.h>
#include "sip_common.h"

10 static void
imadd2(double a[], double *val, double c[],int m, int n);

SipExport int
imadd2_int(char *fname)

15 {
static int l1, m1, n1,/* a */

r_val,c_val,l_val, /* val */
l2;/* c */

static int minlhs=1, maxlhs=1, minrhs=2, maxrhs=2;
20

/* Check number of inputs and outputs */
CheckRhs(minrhs,maxrhs);
CheckLhs(minlhs,maxlhs);

25 /*Input parameters: */
/*GetRhsVar(number, type, matrix_size1, matrix_size2, value);*/
GetRhsVar(1, "d", &m1, &n1, &l1);
GetRhsVar(2, "d", &r_val, &c_val, &l_val);

30 /* Ouput creation:*/
/* CreateVar(number, type, matrix_size1, matrix_size2, &l3); */
CreateVar(3, "d", &m1, &n1, &l2);

/* Call function */
35 imadd2(stk(l1), stk(l_val), stk(l2), m1, n1);

/* The return variable is number (3) */
LhsVar(1) = 3;
return 0;

40 }

30 CHAPTER 7. INTERFACING C WITH SIP

#define A(i,j) a[i + j*m]
#define C(i,j) c[i + j*m]

45 /* m= number of rows, n=columns*/
/* i and j are row and column*/
void
imadd2(double a[], double *val, double c[],int m, int n)
{

50 int i,j;
double *temp1;

/*memory allocation*/
/*Essential !! */

55 temp1=(double*) calloc(n*m,sizeof(double));

for(i=0 ; i < m; i++){
for(j=0; j < n; j++){

60 temp1[i+j*m]=A(i,j)+(*val);
}

}
printf("Temporary matrix completed\n");

65 for(i=0 ; i < m; i++){
for(j=0; j < n; j++){
C(i,j)=temp1[i+j*m];

}
}

70

}

Explanations:

• I hope most of the code is clear

• line 55 is very important: if you forget it, the function might work with
little matrix, but Scilab will crash with huge ones (images for example).

The functions GetRhs and CreateVar reserve some memory space, so you
don’t have to bother about memory management. But, if you use tempo-
rary matrix in your function, you have to care about memory allocation
(or crash).

Now, if you want to test this example, modify your builder.sce file and go !

7.3. HOW ? 31

7.3.4 Misc.

Several precisions:

• for integers, use GetRhsVar(number,”i”,&m,&n,&l) then istk(l)

• for characters, use GetRhsVar(number,”c”,&m,&n,&l) then cstk(l)

32 CHAPTER 7. INTERFACING C WITH SIP

Chapter 8

Thanks

Many thanks to Ricardo Fabbri for creating SIP, for his encouragements and
for his support.

I would also like to thank the following persons:

• J.-P Chancelier and the Scilab group who always took the time to answer
my questions on Scilab.

• Daniel Droz for helping me start in photonics.

33

34 CHAPTER 8. THANKS

Chapter 9

References

Here is a list of the books I used:

• J-P PEREZ - Optique, fondements et applications - 6e edition, DUNOD

• Chancelier, Delebecque, Gomez, Goursat, Nikoukhah, Steer - Introduction
a SCILAB - editions SPRINGER

• C. Rolland - Latex par la pratique - O’REILLY

35

36 CHAPTER 9. REFERENCES

Chapter 10

Index

See next page

37

Index

colormap, 13
convolution, 17
coordinates, 9

Druel, 6

Fabbri, 5
fft, 21
fftshift, 21

gray imread, 16
grayscale, 13

histogram, 19

im2bw, 16
im2gray, 16
imconv, 17
imread, 8
imshow, 8

license, 5

median, 19
mkfftfilter, 23
mkfilter, 18
modulo, 11
mogrify, 19
multiplication, 11

normal, 9

power, 11
pseudocolor, 13

RGB, 16

spectrum, 21
stacksize, 7

strioscopy, 21

threshold, 16
truecolor, 13
typeof, 16

38

	Introduction
	Starting with SIP
	Installing SIP
	Looking at a demo
	A problem with memory
	Reading an image
	Viewing an image
	Writing a matrix as an image file
	Normalising
	About coordinates

	Basic manipulations
	Mean of 2 images
	Multiplication of 2 images
	Addition or subtraction modulo 256

	Grayscales, colors, pseudocolors and conversions
	Grayscale images
	Truecolor images
	Pseudocolor images
	Introduction
	Viewing colormaps
	Pseudocolor images
	I want to see more …

	Converting a colored image to grayscale
	Thresholding

	Image filtering
	Image convolution
	General usage
	Pre-defined filters
	Examples

	Other filters
	Median filter
	Histogram equalization

	Using fft in images
	Observing the spectrum
	Modifying an image by acting on the spectrum

	Interfacing C with SIP
	Why ?
	Warnings
	How ?
	Adding a real to a matrix
	Loading the code in Scilab
	A bit more difficult
	Misc.

	Thanks
	References
	Index

